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Abstract

Exact numerical evaluation of the stationary joint queue-length distribution of a
Markovian finite capacity network with arbitrary size and topology can be obtained
numerically. Nonetheless, the main challenge to such an approach remains the di-
mensionality of the joint distribution, which is exponential in the number of queues.
This thesis proposes an analytical approximation of the joint distribution with a di-
mension that is linear in the number of queues. The method decomposes the network
into overlapping subnetworks. The state of each subnetwork is described aggregately,
i.e. in terms of a reduced state space, while ensuring consistency with the disaggre-
gate, i.e., full state space, distribution. This aggregation-disaggregation technique
is proposed for the analysis of Markovian tandem finite capacity queueing networks.
The model is validated. We present its use to address an urban traffic control prob-
lem, and show the added value of accounting for higher-order spatial between-queue
dependency information in the control of congested networks.

A second, distinct goal of this thesis is to examine the calibration of route choice
parameters in microscopic traffic simulators. Automatically calibrating simulators
using traffic counts requires describing the relationship between route choice and
traffic flows. This thesis proposes an analytical finite capacity queueing model that
accounts for the relationship between route choice and traffic flows. The method is
embedded in a simulation-based optimization framework and applied to a calibration
problem.

Thesis Supervisor: Carolina Osorio
Title: Assistant Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Motivation

Global urbanization coupled with rising vehicle ownership has plagued many cities

with congestion. The total vehicle stock is projected to increase from 800 million

vehicles in 2002 to over 2 billion vehicles by 2030 (Dargay et al., 2007), increasing

faster in non-OECD countries. Additionally, studies have shown that vehicle-miles

traveled increase proportionally to the available miles of roadway, suggesting that

the construction of new roads does not effectively reduce congestion (Duranton and

Turner, 2011). Congestion is thus an important issue in transportation policy, as it

harms our environment and economy due to emissions and increased travel times.

Microscopic traffic simulators and macroscopic traffic models are important tools

used by urban planners and transportation engineers to understand congestion. Tra-

ditionally, microscopic simulators have been used to estimate system performance

and conduct scenario-based analyses of urban networks. These simulators model

the complex decisions of individual drivers, such as the selection of routes and lane

changing behavior, as well as the interactions between drivers. Thus, the evaluation

of these models are computationally expensive. Macroscopic models have been used

to determine strategies to reduce congestion, such as optimizing signal plans for a

set of intersections, but rely on a less realistic set of assumptions. Improving the

quality and use of existing microscopic and macroscopic models help address urban
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congestion due to the low cost of implementation and the short-term solutions it can

provide to existing transportation infrastructure.

1.2 Objectives

1.2.1 Analytical queueing model

Finite capacity queuing models are macroscopic models that have been used to address

several different transportation optimization problems (Osorio and Chong, 2012b,

Osorio and Nanduri, 2012, Chen et al., 2012). The model, described in Osorio and

Bierlaire (2009b), considers each lane within a road segment as a finite capacity queue.

Interactions between queues, i.e. when a vehicle is blocked by a full downstream road

segment, are accounted for indirectly through first order-moments, parameters that

represent the arrival rate or service rate to a queue (road segment). This assumption

improves the tractability of the model but lacks a detailed modeling of between-queue

interactions.

The first objective is to build an analytical finite capacity queueing model that

describes between-queue interactions in more detail by accounting for joint distri-

butional information. Thus, a more accurate representation of congestion can be

attained. This methodology is described in Chapter 2 and applied to a signal control

problem in Section 2.4. The model is considered in a transportation context, yet is

suitable for the analysis of other types of congested networks.

This work has been presented at the 15th meeting of the EURO Working Group on

Transportation and published in the conference proceedings Osorio and Wang (2012),

as well as submitted for journal publication.

1.2.2 Simulation-based optimization

A second objective of this thesis is to develop efficient simulation-based optimization

algorithms to address calibration problems for stochastic microscopic traffic simula-

tors.

14



The applications of simulation-based optimization with microscopic traffic sim-

ulations extend beyond congestion mitigation techniques. Automatic calibration of

the route choice parameters of microscopic traffic simulators is a difficult and practi-

cally relevant problem. A methodological challenge in this context is the formulation

of tractable measurement equations that link available data to the model parame-

ters. Current approaches require significant computational effort as they do not take

advantage of the underlying problem structure. By combining microscopic traffic

simulations with an analytical model that relates route choice parameters to traf-

fic flow, gradient-based optimization routines can be used, assuming the analytical

model is differentiable. Recent work by Flötteröd et al. (2011, 2012) and Flötteröd

et al. (2012) demonstrates the use of an analytical approximation of the gradient in

the calibration of route choice parameters from traffic counts.

This work has been accepted for presentation at the 8th Triennial Symposium on

Transportation Analysis (TRISTAN VII) and submitted to the 2nd Symposium of the

European Association for Research in Transportation (hEART 2013).
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Chapter 2

Approximating the stationary joint

aggregate queue-length

distribution of tandem Markovian

networks

2.1 Introduction

Probabilistic models of urban traffic can provide a detailed description of traffic,

and can allow to solve robust and reliable formulations of traditional transportation

optimization problems. There have been numerous attempts to develop probabilis-

tic link models (i.e., models of vehicular traffic along a homogenous road segment)

based on queueing theory. For a recent review, see Osorio (2010). More recently, a

stochastic formulation of the link-transmission model (Yperman, 2007) was proposed

(Osorio et al., 2011, Osorio and Flötteröd, 2012). The link transmission model is an

operational instance of Newell’s simplified theory of kinematic waves (Newell, 1993).

As analytical and differentiable models, probabilistic link models are of wide in-

terest to address a variety of network design and traffic management problems. Re-

cently, such analytical models have been used to enhance the computational efficiency
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of simulation-based optimization algorithms that embed detailed yet computationally

inefficient microscopic traffic simulators (Osorio and Chong, 2012a, Osorio and Nan-

duri, 2012, Chen et al., 2012, Osorio and Bierlaire, 2010a).

Existing probabilistic traffic models approximate either first-order moments of

the main link performance metrics or the marginal probability distributions of these

link metrics. This chapter proposes an approach to efficiently approximate the joint

queue-length distribution of the main performance metrics of adjacent links. The

purpose is to account for between-link dependencies beyond first-order moments, yet

to do so in a tractable manner such that these techniques can be used for optimiza-

tion purposes. The use of such higher-order distributional information may lead to

more accurate path and network-wide performance estimates, and ultimately enhance

network design and traffic management strategies. The main challenges that arise in

such an approach are the dimensionality of the state space and the complexity of

modeling network-wide dependency both analytically and tractably.

This chapter focuses on an application of finite capacity queueing network (FCQN)

theory. Each link of an urban network is modeled as one (or potentially multiple)

finite capacity queue(s). The term capacity refers to the space capacity of the queue.

Such models differ from traditional queueing models in that they assume there is an

upper bound on the number of vehicles that can fit within a queue.

The analytical stationary analysis of FCQNs is complex for various reasons. Firstly,

unlike Jackson networks or BCMP networks (Jackson, 1957, 1963, Baskett et al.,

1975), such models do not have product-form joint queue-length distributions, i.e.

their joint distribution cannot be decomposed as a product of its marginals (note

that a product-form joint distribution does not imply that the queues are indepen-

dent). Secondly, finite capacity leads to potential spillbacks (referred to in queueing

theory as blocking). That is, the queue of vehicles along a road may extend beyond

the road to upstream roads. Analyzing the blocking phenomenon analytically is chal-

lenging, as illustrated in Osorio and Bierlaire (2009a). Blocking is not captured with

infinite capacity queues, but is prevalent in congested networks.

Exact numerical evaluation of the stationary joint distribution of a Markovian
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network with arbitrary size and topology can be obtained by solving the global balance

equations (presented in Section 2.2.1). A detailed description of these numerical

methods can be found in Stewart (2000). Nonetheless, the main challenge to such

an approach remains the dimensionality of the joint distribution. For instance, for a

network with m queues each with space capacity k (hereafter referred to as capacity),

the dimension of the state space of the joint distribution is (k + 1)m. Thus, the

dimension is exponential in the number of queues. For realistically-sized networks

exact numerical techniques lack computational tractability.

Thus, most analytical analysis of FCQNs consist of approximation methods. The

most popular approximate approach are decomposition methods. The latter reduces

the dimensionality of the system under study by decomposing the network into smaller

subnetworks. Each subnetwork is then modeled independently. Some dependency is

captured by approximating the structural parameters of a subnetwork (e.g. arrival

rates, service rates) as a function of the performance of other subnetworks (e.g., flow

conservation equations). Most decomposition methods decompose the network into

single queues and approximate the marginal distributions of each queue. Decompo-

sition methods that consider subnetworks with two or three queues have also been

proposed. For a review of decomposition methods see Osorio and Bierlaire (2009a).

This chapter proposes to address the dimensionality issue by describing the state of

the network aggregately. We propose a decomposition approach that decomposes the

network into overlapping subnetworks. We approximate the stationary joint aggregate

queue-length distribution of a subnetwork.

The main challenge is deriving an aggregate distribution that is consistent with

the underlying disaggregate distribution. Aggregation-disaggregation techniques for

queueing networks have addressed this issue in the past. To the best of our knowl-

edge, the first such approach is that of Takahashi (1975). It considers an arbitrarily

high-dimensional Markov chain. It clusters the states of the chain into a set of aggre-

gate states. It proposes an exact numerical technique to efficiently derive the joint

aggregate distribution (i.e., the probabilities of all feasible combinations of aggregate

states). An approximate aggregation-disaggregation method for a Markovian FCQN
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network is proposed by Takahashi (1985). Numerical results are presented for a net-

work of 5 queues in tandem. Both the marginals of each queue and the 2-dimensional

joints of pairs of adjacent queues are approximated. The work of Takahashi (1985)

was extended to consider another blocking mechanism in Song and Takahashi (1991).

Schweitzer (1984) formulates the Takahashi (1975) approach for arbitrary topology

and size Markovian FCQNs, and for both the stationary and transient distributions.

Schweitzer (1991) presents a survey of aggregation-disaggregation techniques.

This chapter proposes a methodology that approximates the joint aggregate dis-

tribution of a Markovian FCQN (Section 2.2). The approach considers a stationary

regime and combines ideas from the methods of Takahashi (1975, 1985) and Schweitzer

(1984) along with ideas from other decomposition techniques for FCQNs (Osorio and

Bierlaire, 2009a) and probabilistic road traffic models (Osorio and Bierlaire, 2009b).

The proposed approach is validated versus simulation results (Section 2.3). It is then

used to investigate the added value of accounting for full distributional dependency

in the context of urban traffic signal control (Section 2.4). Section 2.5 presents the

main conclusions and discusses ongoing and future work.

2.2 Model formulation

2.2.1 Aggregation-disaggregation framework

In order to address the dimensionality issues mentioned in the previous section, we

use the aggregation technique described by Schweitzer (1984). This section presents

its main ideas. The technique considers a continuous or discrete time Markov chain

with a finite and large state space. The Markov chain is assumed aperiodic and

communicative. Let Ω denote the state space with card(Ω) = M . The probability of

being in an individual state i ∈ Ω at steady state is denoted by πi. The rate at which

a transition from state i to j, i 6= j, (i, j) ∈ Ω2, can take place is given by qij. The
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steady state probabilities satisfy:
πi
∑
j∈Ω\i

qij =
∑
j∈Ω\i

πjqji, ∀i ∈ Ω (2.1a)

∑
i∈Ω

πi = 1. (2.1b)

The above system of equations is referred to as the global balance equations. For

a detailed derivation, see for instance Chapter 4.5 in Larson and Odoni (1981).

The global balance equations can be rewritten in matrix format as:
πQ = 0 (2.2a)∑
i∈Ω

πi = 1, (2.2b)

where Q is known as the transition rate matrix, and is defined as:

Qij =

 qij, if i 6= j,

−
∑

j∈Ω\i qij if i = j
(2.3)

For Markov chains with a large number of states, Schweitzer (1984) proposes to

partition the M states into M aggregate disjoint states, such that M � M . Let Ω̄

denote the set of aggregate states.

Let Ωa denote the set of disaggregate states within aggregate state a. The prob-

ability of being in aggregate state a, π̄a, is defined as:

π̄a =
∑
i∈Ωa

πi. (2.4)

The global balance equations for the aggregate distribution are given by:
π̄a
∑
b∈Ω̄\a

q̄ab =
∑
b∈Ω̄\a

π̄bq̄ba, ∀a ∈ Ω̄ (2.5a)

∑
a∈Ω̄

π̄a = 1. (2.5b)

where, q̄ab is the transition rate from aggregate state a to aggregate state b, and is
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referred to as an aggregate transition rate.

Schweitzer (1984) relates the aggregate transition rates to the disaggregate tran-

sition rates made from all disaggregate states into aggregate state a through the

following equation (which corresponds to Equation (2.9) of Schweitzer (1984)):

q̄ab =

∑
j∈Ωa

∑
i∈Ωb

πjqji∑
j∈Ωa

πj
, (b, a) ∈ Ω̄2, b 6= a. (2.6)

2.2.2 Aggregate description of a single queue

In this section, we consider a single M/M/1/k queue and derive expressions for its

aggregate transition rates. These expressions are then used in Sections 2.2.3 and

2.2.4 to derive the aggregate model for a tandem queueing network. The state of a

queue is described by the number of jobs (e.g., vehicles), N , in the queueing system.

The state space is given by Ω = {0, 1, .., k}, where k ∈ Z+ is the queue capacity.

The corresponding state transition diagram is displayed in Figure 2-1. Each circle

denotes a state. The arrows denote possible transitions between the states, with their

corresponding rates. In this case, arrivals are determined by the arrival rate, λ ≥ 0,

and departures are determined by the service rate, µ > 0.

We aggregate the k+ 1 states into the following three states: the queue is empty,

the queue is full, the queue is neither empty nor full. The choice of these three

states is based on insights from urban traffic intersection models, where between-

link interactions (i.e. interactions of links that are connected via an intersection) are

mainly determined based on whether a vehicle is ready to be sent from the upstream

link to the downstream link (i.e. non-empty upstream queue) and whether there is

space downstream to receive this vehicle (i.e. non-full downstream queue). There are

now three aggregate states: state 0, state k, and the state defined by the dashed lines

in Figure 2-1.

Figure 2-2 represents the state transition diagram of the aggregate queueing sys-

tem. The states 0, 1 and 2 denote, respectively, the disaggregate states 0, {1, ..., k−1}

and k. As represented in Figure 2-2, the aggregate system is now fully described by

a set of four rates: λ, µ, λ̄, and µ̄, where µ̄ and λ̄ describe the transition rates from
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Figure 2-1: Single disaggregate queue.
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Figure 2-2: Single aggregate queue.

the new aggregate state to one of the other states (they are the aggregate transition

rates).

The aggregate states are described by the random variable NA:

• Empty queue: NA = 0, Ω0 = {N = 0},

• Non-empty and non-full queue: NA = 1, Ω1 = {N ∈ [1, k − 1]},

• Full queue: NA = 2, Ω2 = {N = k}.

Hereafter the disaggregate (resp. aggregate) state probability πi (resp. π̄i) is denoted

P (N = i) (resp. P (NA = i)). The global balance equations satisfied by the aggregate

state probabilities are:

λP (NA = 0) = µ̄P (NA = 1) (2.7a)

µP (NA = 2) = λ̄P (NA = 1) (2.7b)
2∑
i=0

P (NA = i) = 1 (2.7c)

Following Equation (2.6), the aggregate transition rates are given by:


λ̄ =

∑
j∈Ω1

∑
i∈Ω2

P (N = j)qji∑
j∈Ω1

P (N = j)
(2.8a)

µ̄ =

∑
j∈Ω1

∑
i∈Ω0

P (N = j)qji∑
j∈Ω1

P (N = j)
. (2.8b)
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In an M/M/1/k queue we have (see Figure 2-1):

qjk =

 λ if j = k − 1

0 otherwise
(2.9)

qj0 =

 µ if j = 1

0 otherwise.
(2.10)

Inserting Equations (2.9) and (2.10) into (2.8), and noting that Ω0 = {0} and

Ω2 = {k}, we obtain:
λ̄ =

P (N = k − 1)λ∑
j∈Ω1

P (N = j)
= λ

P (N = k − 1)

P (NA = 1)
(2.11a)

µ̄ =
P (N = 1)µ∑
j∈Ω1

P (N = j)
= µ

P (N = 1)

P (NA = 1)
(2.11b)

The above equations can be rewritten as:

{
λ̄ = λP (N = k − 1 | NA = 1) (2.12a)

µ̄ = µP (N = 1 | NA = 1). (2.12b)

In summary, in order to determine the aggregate transition rates λ̄ and µ̄, we need

to evaluate the probabilities P (N = k−1 | NA = 1) and P (N = 1 | NA = 1). We call

these probabilities disaggregation probabilities, since they represent the probabilities

of being in a disaggregate state of a given aggregate state.

For a single M/M/1/k queue, there is a closed-form expression for the stationary

queue-length distribution (Bocharov et al., 2004):

P (N = n) =
(1− ρ)ρn

1− ρk+1
∀n ∈ [0, k], (2.13)

where ρ is known as the traffic intensity and is defined as λ/µ. This expression holds

for ρ 6= 1. We assume hereafter that ρ 6= 1. Thus, we can obtain an exact closed-form
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expression for the disaggregation probabilities.

P (N = 1 | NA = 1) =
P (N = 1)

P (NA = 1)
=

(
(1− ρ)ρ

1− ρk+1

)(k−1∑
j=1

(1− ρ)ρj

1− ρk+1

)−1

= ρ

(
k−1∑
j=1

ρj

)−1

= ρ

(
ρ

1− ρk−1

1− ρ

)−1

=
1− ρ

1− ρk−1
. (2.14)

We can proceed similary to obtain:

P (N = k − 1 | NA = 1) =
(1− ρ)ρk−2

1− ρk−1
. (2.15)

2.2.3 Aggregate description of a three queue tandem network

We consider a network of three queues in a tandem (i.e. series) topology. This is

the simplest topology in which a queue is affected by both upstream and downstream

traffic conditions. Hereafter index i refers to a queue index.

Queue i (i ∈ {1, 2, 3}) has finite space capacity ki ∈ Z+ and independent exponen-

tially distributed service times with parameter µi. For each queue, external arrivals

(i.e. arrivals that come from outside the network) follow a Poisson process with rate

parameter γi. The joint aggregate probabilities are denoted by P (NA = s), where an

aggregate state s is defined as the triplet: s = (ji, ji+1, ji+2), and ji ∈ {0, 1, 2}. For

a three queue network with three aggregate states, the state space is aggregated into

33 = 27 distinct states. The dimension of the state space is now independent of the

individual queue capacities.

The main challenges in extending the approach from a single queue to network

of queues arise as a result of the possibility of blocking. Blocking occurs when a job

completes service yet cannot proceed because the downstream queue is full. This is

known as spillback in urban traffic. We assume here blocking-after-service (Balsamo

et al., 2001), where a blocked job continues to occupy the underlying server until it

is unblocked. Thus, a job that cannot proceed downstream due to lack of space is
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blocked, while also blocking the use of the underlying server. A job becomes unblocked

when its downstream destination queue can accommodate it.

Two main challenges that arise due to blocking are:

1. the rate of job departures at a blocked queue depends on both the state and

the service rates of downstream queues,

2. a service completion at a blocking queue (i.e. a queue that is blocking jobs at

upstream queues) triggers state changes at upstream blocked queues.

Methods to approximate stationary marginal queue-length distributions that ex-

plicitly describe blocking states have been proposed (e.g., Osorio and Bierlaire (2009a)).

They illustrate the complexity of approximating the blocking probabilities, and the

effective service rates (service rates that account for the occurrence of blocking). In

this work, we propose simple approximations to account for both challenges, described

respectively in Sections 2.2.3 and 2.2.3.

Aggregate transition rates

Within a three queue network, we assume that the aggregate transition rates for a

given queue i are given by (2.12), and that the disaggregation probabilities have the

functional form given by Equations (2.14) and (2.15). The disaggregation probabil-

ities are each a function of the traffic intensity ρ of the underlying queue. We now

describe how we approximate ρ.

The traffic intensity is defined as the ratio between an arrival rate and a service

rate. In a finite capacity queuing network, the prevailing arrival and service rates of

a given queue may be state-dependent. This is due to the occurrence of blocking. To

illustrate this, consider a given queue i that is the most upstream queue of a three-

queue tandem network. Consider a job that is occupying a server at queue i. It can

either be:

1. undergoing service, which will be completed with rate µi,
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2. blocked by its directly downstream queue which is itself not blocked, the job

will therefore be unblocked with rate µi+1,

3. blocked by its directly downstream queue which is itself blocked, the job will

therefore be unblocked with rate µi+2.

Thus, depending on the state of that job (under service, blocked and if so blocked by

which queue), the queue will have a different prevailing service rate.

In order to approximate ρ, we use a simple and exogenous approximation for

the state-dependent service rates. For state s = (1, ji+1, ji+2), the state-dependent

(prevailing) service rate, µi,s, is given by:

µi,s =


µi if ji+1 < 2

µi+1 if ji+1 = 2 and ji+2 < 2

µi+2 if ji+1 = 2 and ji+2 = 2

(2.16)

This approximation states that if queue i has one or several consecutive down-

stream queues that are full, then its prevailing service rate is that of the most down-

stream queue that is full. Recall that for queue i, the only aggregate state with more

than one disaggregate state (i.e. the only state where disaggregation probabilities are

needed) is aggregate state 1. This is why, when approximating the disaggregation

probabilities of queue i, we need only consider states s with ji = 1.

The arrival rate of queue i is obtained by solving the flow conservation equation

(which is derived and further detailed in Osorio and Bierlaire (2009a)):

λi = γi +
λi−1P (Ni−1 < ki−1)

P (Ni < ki)
. (2.17)

where:

P (Ni < ki) = P (NA,i < 2) (2.18)

and Ni (resp. NA,i) represents the disaggregate (resp. aggregate) number of jobs in

queue i.
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To summarize, the state-dependent approximation for the disaggregation proba-

bilities (Equations (2.14) and (2.15)) are denoted αf
i,s and αe

i,s, and are given by:


αf
i,s = P (Ni = ki − 1 | NA,i = 1, NA = s) =

(1− λi/µi,s)
1− (λi/µi,s)ki−1

, (2.19a)

αe
i,s = P (Ni = 1 | NA,i = 1, NA = s) =

(1− λi/µi,s)(λi/µi,s)ki−2

1− (λi/µi,s)ki−1
. (2.19b)

where NA is the state vector (NA,i, NA,i+1, NA,i+2), and the superscripts e and f refer

to empty and full, respectively (since these expressions are used to approximate the

transition rates towards empty and full states, respectively).

Blocking probabilities

Recall that we describe the state of a queue as either empty, full or ‘non-empty and

non-full’. Given a job occupying a server, this state description does not distinguish

between a job undergoing service or one that has completed service and is blocked.

This section presents a simple approximation of the probability of a job being blocked,

i.e., the blocking probability.

The following example allows us to introduce the notion of blocking probability

and the complex between-queue dependencies that arise due to blocking. Consider

a state s = (1, 2, 2) where queue i (i.e., the most upstream queue) is in (aggregate)

state 1, and queues i+ 1 and i+ 2 are in aggregate state 2, i.e. they are full. Assume

there is a service completion at queue i + 2. This service completion can trigger a

transition to one of the following states:

• if queue i+ 2 is not blocking queue i+ 1, then the new state is (1, 2, 1);

• if queue i+ 2 is blocking queue i+ 1 and is not blocking queue i, then the new

state is (1, 1, 2);

• if queue i+ 2 is blocking queue i+ 1 and is blocking queue i, then the new state

can be either (1, 2, 2) or (0, 2, 2).

In order to determine the new state to which a transition can take place, we use
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state-dependent, yet simple and exogenous, approximations for the blocking proba-

bilities. The approximation assumes that service completions follow an exponential

distribution. We use the following property of exponential random variables. For a

set of n independent service durations {X`}`=1:n, which are exponentially distributed

random variables with rate parameter µ`, the probability that the first service comple-

tion is of type ` is given by (e.g., Larson and Odoni (1981), Chapter 2.12.4, Equation

(2.62)):

P (X` < Xi ∀i 6= `) =
µ`∑n
j=1 µj

. (2.20)

We use this property to approximate the blocking probabilities. The states that

are affected by the blocking probabilities are listed in Table 2.1. This table lists the

queues that are blocked (column 1), the queue that is at the source of (i.e. causes) the

blocking (column 2), the feasible joint states where such blocking can occur (column

3) and the corresponding probability with which this blocking occurs (column 4).

We assume that no queue is initially blocked in any of the feasible joint states and

approximate the probability that blocking occurs before the joint aggregate state

transitions. For brevity, multiple states for the initial joint states are listed in braces.

The approximations of the blocking probabilities are given by:

βi,1 =
µi

µi + µi+1

(2.21)

βi,2 =
µi

µi + µi+1 + µi+2

µi+1

µi+1 + µi+2

+
µi+1

µi + µi+1 + µi+2

µi
µi + µi+2

(2.22)

βi,3 =
µi+1

µi+1 + µi+2

(2.23)

βi,4 =
µi+1

µi + µi+1 + µi+2

µi+2

µi + µi+2

(2.24)

Equations (2.21) and (2.23) (rows 1 and 3 of Table 2.1) are derived directly from

Equation (2.20), and represent the probability that the first (resp. second) queue

finishes service before the second (resp. third) queue. That is, blocking occurs due to

the queue immediately downstream. Equation (2.22) (row 2 of Table 2.1) considers
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Blocked Source
queues queue Initial joint states Blocking probability
i i+ 1 ({1, 2}, 2, {0, 1}) βi,1
i, i+ 1 i+ 2 ({1, 2}, 2, 2) βi,2
i+ 1 i+ 2 ({0, 1, 2}, 1, 2), (0, 2, 2) βi,3
i+ 1 i+ 2 ({1, 2}, 2, 2) βi,4

Table 2.1: Blocking probabilities.

the scenario where both the first and the second queue are blocked by the third queue.

This occurs when both the first and second queues complete their service before the

third queue. The equation sums the probabilities of the independent events in which

either the first or the second queue finish first out of the three and then the remaining

queue of the first two finishes service before the third. Equation (2.24) (row 4 of

Table 2.1) considers the case where the second queue is blocked by the third queue,

but the first queue is not blocked. This is the probability that the second queue

finishes service before the first and third queues and that the next queue to finish

service is the third queue.

Let us summarize the procedure to derive the joint aggregate distribution of a

three-queue tandem network. The joint distribution P (NA) is obtained by solving

the corresponding (aggregate) global balance equations (2.5), which depend on the

transition rate matrix, Q̄. The latter is defined as:

Q̄ = f(γ, µ, k, αf, αe, β), (2.25)

where γ, µ, and k are exogenous parameters, αf and αe are the state-dependent

disaggregation probabilities (defined by Equations (2.17)-(2.19)), and β denotes the

blocking probabilities (Table 2.1). For a three queue system, this results in 27 + 12 =

39 variables, representing the 27 joint states of the system as well as the 12 state-

dependent disaggregation probabilities (following (2.16) there are 3 disaggregation

probabilities for the first queue, 2 for second queue 3 for the third queue). The full

transition rate matrix, Q̄, of a 3-queue tandem network is given in Appendix A.
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Queue i Queue i+1 Queue i+2Queue i-1Queue i-2

System i-2 System i-1 System i

Figure 2-3: Overlapping systems of three tandem queues.

2.2.4 Aggregate description of a tandem network with I queues

This section generalizes the above approach to a tandem network with I queues. If

the above approach is directly applied to an I-queue network, the state space would

be of dimension 3I , and would thus increase exponentially with the number of queues

in the system. Instead, we view the network as a set of overlapping systems of three

tandem queues. The set of I queues is decomposed into I − 2 overlapping systems

each with three queues in tandem. This decomposition is illustrated in Figure 2-3.

Thus, the number of states is linearized with the number of queues.

Each of the I − 2 systems can be viewed as a single 3-queue system. For each

system, the approach of Section 2.2.3 is applied, i.e. the joint aggregate distribution

of each system satisfies the system of equations described in Section 2.2.3.

Consider a 3-queue system within a larger network (e.g., system i−1 of Figure 2-3).

In order to account for its dependencies with adjacent queues, we need to approximate

the arrival rate to the most upstream queue, and the effective service rate of its most

downstream queue. In the 3-queue network of Section 2.2.3, these two rates were

exogenous, however, in a larger tandem network, these rates are now endogenous.

For a given system with queues indexed by (i, i+ 1, i+ 2), the arrival rate to the

most upstream queue (queue i) is given by the flow conservation equations (2.17).

The service rate of the most downstream queue (queue i+ 2) is obtained by following

the ideas in Osorio and Bierlaire (2009a), where the effective service rate of a queue

(which accounts for service and for potential blocking from downstream queues) is
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given by:

1

µ̂i
=

1

µi
+ pbi

1

µ̃i
, (2.26)

where µ̂i denotes the effective service rate, µi represents the exogenous service rate,

pbi denotes the blocking probability, and µ̃i is the unblocking rate.

The approximation for the unblocking rate is derived in Osorio and Bierlaire

(2009a). Its simplified expression for a single server queue is detailed in Osorio and

Bierlaire (2009b), and is given by:

1

µ̃i
=
λi+1P (Ni+1 < ki+1)

λiP (Ni < ki)

1

µ̂i
, (2.27)

which is equivalent to:

1

µ̃i
=
λi+1P (NA,i+1 < 2)

λiP (NA,i < 2)

1

µ̂i
. (2.28)

The probability that queue i is blocked, pbi , is approximated by:

pbi = P (NA,i+1 = 2)
µi

µi + µi+1

, (2.29)

which considers the probability that the immediately downstream queue is full and

the probability that the upstream queue serves before the downstream queue.

Thus, when analyzing a 3-queue system (with queues indexed by (i, i + 1, i + 2))

that is embedded within a larger network of queues, we apply the procedure of Section

2.2.3, with the arrival to queue i given by Equation (2.17) and the effective service

rate of queue i+ 2, µ̂i+2, given by Equations (2.26)-(2.29).

Since the systems overlap (see Figure 2-3), there are individual and pairs of queues

that are common to multiple systems. We include the following system of linear

constraints in order to ensure that the one or two-dimensional marginal distributions

obtained are equivalent regardless of the system from which they are obtained.

For an I-queue network, there are I − 3 pairs of queues that are contained in two
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different systems. This leads to 32 equations (a pair of queues has 32 joint states) for

each overlapping pair of queues:

2∑
a=0

Pi−1(i− 1 = a, i = b, i+ 1 = c) =
2∑
d=0

Pi(i = b, i+ 1 = c, i+ 2 = d),

(b, c) ∈ {0, 1, 2}2, i ∈ {2, . . . , I − 2} (2.30)

where Pi denotes the distribution obtained from analyzing the ith 3-queue system, for

i ∈ [2, I − 2]. Enforcing consistency between systems with 2 overlapping queues also

ensures consistency between systems with 1 overlapping queue.

For a network of I queues, the joint states and state-dependent disaggregation

probabilities are represented by (27 + 12)(I − 2) variables and 2(I − 2) variables

represent the arrival and service rates for the first and (resp.) last queues of systems.

Each of these variables has an associated equation, and ensuring consistency adds

9(I − 3) equations without adding any variables. Thus, there are 41(I − 2) + 9(I − 3)

equations and 41(I − 2) variables for a tandem network of I queues.

2.3 Validation

We compare the joint aggregate distributions obtained by the proposed model with

those estimated from a discrete event simulation model of a Markovian FCQN. For

all experiments in this section, 10,000 simulation replications are run, each with a

duration of 1,000 time units in order to ensure stationarity. For each replication, the

disaggregate states are evaluated at time 1,000, from which we derive the aggregate

states.

Let ps denote the probability of being in a given aggregate state s. A 95% confi-

dence interval for ps is given by: p̂s ± 1.96
√

p̂s(1−p̂s)
10,000−1

(see, for instance, Section 7.3.3

of Rice (1994)), where p̂s is the simulated estimate of ps. This confidence interval is

displayed as error bars in the figures of this section.

The aggregate joint stationary distribution is solved using the nonlinear systems of

equations solver of Matlab (“Levenberg-Marquardt” algorithm of the fsolve function)
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Scenario 1 2 3 4 5 6 7 8 9
µ1 2 2 2 2 2 2 6 6 6
µ2 2 2 2 4 4 4 4 4 4
µ3 2 2 2 6 6 6 2 2 2
k1 2 5 10 2 5 10 2 5 10
k2 2 5 10 2 5 10 2 5 10
k3 2 5 10 2 5 10 2 5 10

Table 2.2: Three-queue network scenarios.

(Mathworks, Inc., 2012), with a tolerance of 10−6. Initial values are obtained by

approximating the marginal distribution of each queue using the FCQN model given

in Appendix C, and then approximating the joint distribution as the product of the

marginals.

Three queue network

We assume that external arrivals only occur at the first queue, with γ1 = 1.8. We

consider nine scenarios with differing service rates and queue capacities, displayed in

Table 2.2. In all scenarios, the minimum service rate is 2, implying an approximate

traffic intensity of 0.9, a high level of congestion.

Each plot of Figure 2-4 displays the aggregate joint stationary distribution for each

scenario. For scenarios 1, 4, and 7, with queue capacities of (2, 2, 2), the aggregate

state 1 maps directly onto one disaggregate state, and thus the expressions for the

state-dependent disaggregation probabilities, αe and αf, are exact and equal to 1. In

these cases, the errors between the proposed model and the simulation estimates are

due to errors in blocking probabilities. There is an excellent match between the two

distributions in scenarios 1, 4 and 7. The approximations in scenarios 2, 3, 5 and 6

are also excellent.

In scenarios 7−9, blocking is most likely to occur as a result of the third queue,

which leads to the most complex blocking configurations. For these three scenarios,

the accuracy of the proposed approximation decreases as the space capacity increases.

This can be partly explained by the increasing difficulty to approximate the disag-
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Figure 2-4: Stationary joint aggregate distribution for all scenarios. The blue circles
represent the proposed model predictions, and the red crosses represent the simulation
estimates with error bars for the probability of being in each of the 27 states.
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Queue i 1 2 3 4 5
γi 3 0 3 3 0
µi 10 10 10 10 10
ki 25 10 25 10 25

Table 2.3: Five-queue network scenario.
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Figure 2-5: Stationary distributions for the three systems in a 5-queue network. The
blue circles represent the proposed model predictions, and the red crosses represent
the simulation results.

gregation probabilities as the space capacity increases. Additionally, scenarios 8 and

9 illustrate the complexity of accurately approximating both the intricate blocking

effects between queues, as well as their interaction with the within-queue disaggregate

states (i.e., the disaggregation probabilities). Thus, the resulting validation scenarios

will consider this complex setting where both the space capacity is large, and blocking

is triggered by queues downstream of the network.

Five queue network

We consider a 5-queue network with exogenous queue parameters defined in Table

2.3. This configuration also leads to a traffic intensity of approximately 0.9 for queues

4 and 5, which is a high level of congestion. Thus, blocking is likely to occur. For

a 5-queue system, there are three 3-queues systems. The three corresponding joint

distributions are displayed in Figure 2-5. The distributions obtained analytically

approximate well those obtained through simulation.
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Queue i 1 2 3 4 5 6 7 8
γi 4 0 1 1 0 2 0 1
µi 10 10 10 10 10 10 10 10
ki 25 10 25 10 25 10 25 10

Table 2.4: Arrival rates, service rates, and queue capacities for the 8-queue scenario.
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Figure 2-6: Stationary distributions for the six systems of an 8-queue network. The
blue circles represent the model predictions, and the red crosses represent the simu-
lation results.

Eight queue network

The 8-queue network considers a similar scenario as for the 5-queue network: exter-

nal arrivals along the series of queues lead to downstream queues with high traffic

intensity. The parameter values are given in Table 2.4. Figure 2-6 displays the joint

stationary distributions of the six 3-queue tandem systems. The approximations pro-

vided by the analytical model accurately mimic those estimated via simulation. Thus,

the proposed approach can capture the propagation of congestion (e.g., spillbacks)

accurately.
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Figure 2-7: Histogram of the errors between the simulated and predicted state prob-
abilities for each of the 23(27) = 621 states.

Twenty-five queue network

The 25-queue network has a service rate of 10 for each queue and an alternating

capacity of 25 and 10, as in the 8-queue scenario. External arrivals occur at queues

1, 11 and 21, with a rate of 2. A histogram of the error between the simulated and

analytically approximated state probabilities is displayed in Figure 2-7. Again, the

approximations are very accurate.

2.4 Case study

In this section, we use the proposed model to address a traditional urban traffic

signal control problem. The purpose of this section is to investigate the added value

of accounting for joint distributional information. We compare the performance of

the proposed approach with that of an equivalent approach that yields only one-

dimensional marginal (disaggregate) queue-length distributions. We call the latter

approach the independent queueing model. It is derived in Osorio and Bierlaire
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Figure 2-8: Network of single lane roads used for the case study.

(2009b) and described in Appendix C. In order to model an urban road network as

an FCQN, we follow the approach in Osorio and Bierlaire (2009b). Each lane in the

road network is modeled as a queue. The service rate of a queue corresponds to the

flow capacity of the underlying lane.

2.4.1 Network

We consider the road network displayed in Figure 2-8. It considers 20 single-lane

roads (i.e. 20 queues) and 4 intersections, each with 2 endogenous phases. All west-

bound links of the main artery are modeled jointly, as are all east-bound links. The

cross streets (north-bound and south-bound) are modeled independently (following

the independent queueing formulation of Appendix C). Drivers travel along a single

direction (i.e. they do not turn within the network). External arrivals and departures

to the network occur at the boundaries of the network (represented by the circles in

Figure 2-8).

We consider two different demand scenarios. For the medium demand scenario,

the east-bound and west-bound demand (i.e. demand along the main arterial, noted

as E−W and W−E) is 700 vehicles per hour in each direction. This increases to 900

vehicles per hour in the high demand scenario. Numbering each intersection from left

to right, the north and southbound demand for the cross streets is listed in Table 2.5.
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Demand E−W W−E N−S (1) N−S (2) S−N (2) S−N (3) N−S (4)
Medium 700 700 100 600 600 100 100

High 900 900 100 600 600 200 200

Table 2.5: Demand in vehicles per hour for the medium and high demand scenarios.

The performance of the signal plans proposed by both the independent and joint

formulations are evaluated by a microscopic traffic simulation model, implemented

in AIMSUN, version 6.1 (TSS, 2011). Fifty simulation replications are run, each for

one hour with a warm-up period of fifteen minutes. For each replication, we obtain

a given simulated performance measure (e.g., average trip travel time), and compare

the cumulative distribution functions (cdf’s) obtained from the 50 observations.

2.4.2 Problem formulation

The signal control problem that we consider is formulated in detail in Osorio and

Bierlaire (2009b) and presented briefly here. For a review of traffic signal control

terminology and formulations, we refer the reader to Appendix A of Osorio (2010).

We consider a fixed-time (also called time of day or pre-timed) control strategy. These

are strategies that use historical traffic patterns to derive a fixed signal plan for a given

time period. The signal control problem is solved offline. The signal plans of multiple

intersections are determined jointly. The decision variables are the green splits (i.e.,

normalized green times) of phases of the different intersections. All other traditional

control variables (e.g., cycle times, offsets, stage structure) are assumed fixed.

To formulate this problem we introduce the following notation:
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bi available cycle ratio of intersection i;

x(j) green split of phase j;

xL vector of minimal green splits;

I set of intersection indices;

L set of indices of the signalized lanes;

PI(i) set of phase indices of intersection i;

PL(`) set of phase indices of lane `.

The problem is formulated as follows:

min
x
T (x, y;u) (2.31)

subject to

∑
j∈PI(i)

x(j) = bi, ∀i ∈ I (2.32)

µ` −
∑

j∈PL(`)

xjs = 0, ∀` ∈ L (2.33)

h(y;u) = 0 (2.34)

y ≥ 0 (2.35)

x ≥ xL, (2.36)

where the decision vector x consists of the green splits for each phase. Constraints

(2.32) ensure that for a given intersection the available cycle time is distributed among

all phases. Constraint (2.33) relates the service rate (i.e., link flow capacity) of a

signalized queue to the saturation flow s (set to 1800 vehicles per hour) and to its green

split xj. Equation (2.34) represents the queuing model, i.e. the system of equations

that is solved in order to yield the queue-length distributions, and the corresponding

delays. The queuing model h depends on a vector of endogenous queuing variables y

(e.g., disaggregation probabilities) and a set of exogenous parameters u (e.g., external

arrival rates, space capacities). The endogenous queuing variables are subject to
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positivity constraints (2.35). Green splits have lower bounds (Equation (2.36)), which

are set to 4 seconds in this work (following the transportation norms VSS (1992)).

The objective function T (x, y; p) represents the expected trip travel time.

The expected time in the system is obtained by applying Little’s law: (Little,

2011, 1961):

T (x, y;u) =

∑
iE[Ni]∑

i γiP (Ni < ki)
, (2.37)

where E[Ni] represents the expected number of vehicles in queue i and the summation

considers all queues in the network (queues are indexed by i). The derivation of E[Ni]

is given in Appendix B.

2.4.3 Implementation notes

The initial green times are given by allocating the available green time at an intersec-

tion equally between its phases. The signal control problem is solved analytically with

the independent queueing model. The independent queueing model uses the fsolve al-

gorithm (Mathworks, Inc., 2012) to solve for an initial point by using the initial green

times. The signal optimization problem for the independent queueing model allows

the green times to vary, adding variables representing the green times and constraints

representing the available green times and minimum green times. The problem is

solved by the “active-set” algorithm within the fmincon function (Mathworks, Inc.,

2012) with constraint and function tolerances of 10−6 and 10−3, respectively. This

yields an optimal set of green times that is used by this joint signal control formulation

as a better initial point than the initial plan used by the independent model.

The green times output by the independent approach are used as initial green

times for the joint model, and the initial values for the joint model are solved first

before allowing the green times to vary.

When using the joint model to address the control problem, we also implement

the expected number of vehicles in a queue, E[Ni], and the probability that a queue

is full as variables. The approximation of E[Ni] is derived in Appendix B. The
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probability that a queue is full is taken from summing the relevant states from the

joint distributions. Thus, in an I-queue network we have 2I additional variables and

constraints, resulting in (41)(I − 2) + 2I variables and (41)(I − 2) + 2I + 9(I − 3)

constraints. This road network consists of two 5-queue systems modeled jointly, and

the remaining 10 queues are modeled independently. Each 5-queue system leads to

(41)(5− 2) + 2(5) = 133 variables and (41)(5− 2) + 2(5) + 9(5− 3) = 151 equations.

Queues modeled independently each lead to 5 variables and 5 equations. The joint

model therefore consists of 316 variables and 352 constraints. This initial problem is

solved with the Sequential Quadratic Programming (SQP) algorithm within the fmin-

con function of Matlab, with a constraint tolerance of 10−6 and a function tolerance

of 10−3.

The signal control problem has the following additional endogenous variables and

constraints: 8 phase variables (2 per intersection) with their corresponding lower

bound constraints (Equation (2.36)), 4 green split allocation linear constraints (Equa-

tion (2.32)) (1 per intersection). Thus, the signal control system consists of 324 vari-

ables, 356 equality constraints, and 8 inequality constraints. The optimization prob-

lem is solved with the Sequential Quadratic Programming (SQP) algorithm within

the fmincon function of Matlab, with a constraint tolerance of 10−6 and a function

tolerance of 10−3.

2.4.4 Results

Medium demand scenario

The cdf of the average (resp. total) trip travel times is presented in the left (resp.

right) plot of Figure 2-9. The signal plan proposed by the joint model outperforms

the signal plan proposed by the independent model.

We test the hypothesis that the average trip travel time derived from the joint

model is equal to the time derived by the independent model by conducting a paired

t-test. The sample mean of the average trip travel times for the 50 replications

with the signal plan derived from the independent model is 1.0375 minutes with

43



1 1.05 1.1 1.15
0

0.2

0.4

0.6

0.8

1

x: average trip travel time [min]

Em
pi

ric
al

 c
df

 F
(x

)

 

 

2800 2900 3000 3100 3200
0

0.2

0.4

0.6

0.8

1

x: total travel time [min]

Em
pi

ric
al

 c
df

 F
(x

)

 

 

Joint
Independent

Joint
Independent

Medium Demand Scenario

Figure 2-9: The left (resp. right) plot displays the cdf’s of the average trip travel
time (resp. total travel time) for the medium demand scenario.

a sample standard deviation of 0.0180. For the joint model, the resulting signal

plan led to a sample mean of 1.0300 minutes and a sample standard deviation of

0.0179. Representing the sample mean by Y , sample variance by s2, and number of

observations O, the test statistic is:

t =
Y 1 − Y 2√
s2

1/O + s2
2/O

(2.38)

Thus, the test statistic for this experiment is 2.096 There are 2(O)− 2 degrees of

freedom, such that d.f. = 98 (Hogg and Tanis, 2006, p. 486). The null hypothesis is

rejected with a significance level of 0.05, as the critical value, t1−0.05,98 = 1.661, is less

than the absolute value of the test statistic for this experiment, 2.096.

High demand scenario

The high demand scenario increases the demand relative to the medium demand

scenario along the main arterial and two of the cross streets. The cdf of the average

(resp. total) trip travel time is presented in the left (resp. right) plot of Figure 2-

10. The signal plan proposed by the joint model outperforms that proposed by the
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Figure 2-10: The left (resp. right) plot displays the cdf’s of the average trip travel
time (resp. total travel time) for the high demand scenario.

independent model. Additionally, it leads to signal plans with reduced variability in

the average trip travel time.

The additional demand in the high demand scenario leads to an increase in the

average trip travel times, as congestion increases and a greater number of vehicles

take the longest route, the main arterial. Figure 2-11 presents the cdf’s of the total

number of trips for the high demand scenario. We test the hypothesis that the total

number of trips completed derived from the joint model is the same as the number of

trips completed in the independent model using a paired t-test (Equation (2.38)). The

sample means for the joint and independent models are 3529 and 3510, respectively,

with standard deviations of 49.2 and 59.5, respectively. The test statistic for this

experiment is therefore 1.700. There are 98 degrees of freedom. The null hypothesis

is rejected, as the test statistic is greater than the critical value, t1−0.05,98 = 1.661.

We test the hypothesis that the average trip travel derived from the joint model

offers no improvement over the independent model by conducting a paired t-test

(Equation (2.38)). The sample mean of the expected trip travel times for the 50

replications with the signal plan derived from the joint (resp.) independent model

is 1.0804 (resp. 1.1973) minutes with a sample standard deviation of 0.0374 (resp.
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Figure 2-11: Cdf’s of the total number of completed trips for the high demand scenario
for each model.

0.0904). For 98 degrees of freedom, the null hypothesis is rejected, as the test statistic

of 8.4539 is greater than the critical value, t1−0.05,98 = 1.661.

2.5 Conclusion

This chapter proposes an analytical approximation of the stationary joint aggregate

queue-length distribution of a tandem Markovian network. The method combines

ideas from decomposition methods, finite capacity queueing network models and

aggregation-disaggregation techniques. The state space of the proposed distribution

increases linearly with the number of queues, rather than exponentially, making it

suitable for the analysis of large-scale networks. The analytical joint distribution is

validated versus simulation estimates. This queueing method is then used to model

a congested urban traffic network and to address a traditional signal control prob-

lem. The problem is solved with the proposed joint modeling approach and with

an analytical model that only captures first-order between-queue dependency. The

proposed model yields signal plans with significantly lower average trip travel times.
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This case study illustrates the added value of using higher-order spatial dependency

information for traffic control.

The extension of the proposed stationary model to account for arbitrary topology

networks, as well as its use to enhance the computational efficiency of simulation-

based optimization methods (Chen et al., 2012, Osorio and Chong, 2012a, Osorio and

Nanduri, 2012, Osorio and Bierlaire, 2010a) is of interest. Ongoing work focuses on

the analytical approximation of the joint aggregate transient distribution.
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Chapter 3

Efficient calibration techniques for

stochastic traffic simulators

3.1 Introduction

Microscopic traffic simulators provide a detailed representation of urban transporta-

tion system dynamics. The greater resolution of microscopic models, as compared

to macroscopic (flow-based) models, accounts for additional interactions and can ad-

dress a variety of transportation problems (Osorio and Chong, 2012b, Osorio and

Nanduri, 2012, Chen et al., 2012, Nagel and Flötteröd, 2012). Due to their increased

complexity, microscopic traffic simulators require more parameters to be calibrated,

i.e. estimate the parameters used in the simulators from measured data. Relating

available data to the model parameters in a computationally efficient manner is a

largely unresolved challenge.

Most existing approaches to parameter calibration use black-box optimization

routines, rather than exploiting the underlying structure of the problem by captur-

ing the relationship between model parameters and the traffic data. Examples of

computationally intensive strategies include the simultaneous perturbation stochas-

tic approximation (SPSA; Spall (1992)), the Kalman Filter (Kalman, 1960), and

derivative-free search techniques. See Balakrishna (2006) and Antoniou (2004) for

examples, or Ben-Akiva et al. (2012) for a literature review. Recent contributions by
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Flötteröd et al. (2011, 2012), Flötteröd et al. (2012) approach the calibration problem

efficiently by analytically approximating the gradient of the measurement equation.

This chapter presents a methodology for the calibration of stochastic traffic sim-

ulation models from network flows. This approach distinguishes itself from existing

literature by combining traffic simulation observations with a tractable analytical

approximation of non-linear traffic flow dynamics, allowing for the application of

gradient-based optimization routines to the calibration problem.

3.2 Methodology

3.2.1 Formal problem statement

Each origin-destination pair (OD) in an urban network is connected by a set of routes.

For origin, O, and destination, D, the set of routes is denoted by ROD. The total

demand for an OD pair connected by a route r is given by dOD(r). The probability

of that a vehicle selects route r is given by P (r; x, θ), where x represents network

attributes (in particular, travel times) that describe alternatives routes, and θ is a

vector of parameters that governs the route choice selection. Denote the set of routes

that contain a link segment i as Ri. Assuming no losses, the expected flows q on a

link segment i for parameters θ are given by:

qi(θ) =
∑
r∈Ri

dOD(r)P (r; x, θ)) (3.1)

Because the network travel times, x, depend on the network flows, defined in

Equation (3.1), the network travel times and flows depend on each other. These

equations can be solved iteratively. In a traffic microsimulation, these iterations can

be interpreted as a learning process, where users select routes based on the recent

network conditions x, which updates the future network conditions (route flows and

travel times).

Denoting yi as the given a traffic count on link segment i, a non-linear least square
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formation of the calibration problem is given by:

min
θ

∑
i

(yi − qi(θ))2 (3.2)

The calibration problem is difficult due to the complexity of the relationship be-

tween route flows and travel times, described Equation (3.1). This relationship is not

available in closed form, but can be evaluated through microscopic traffic simulation.

An efficient simulation-based optimization approach to the calibration problem can

be formulated by embedding structural information that analytically approximates

the relationship between route flows and travel times.

3.2.2 Simulation-based optimization formulation

Our simulation-based optimization (SO) approach combines information from the

simulator with information from an analytical model that relates route flows and

travel times, described in Section 3.2.4. This SO approach has been used to ad-

dress large-scale urban traffic management problems with detailed, yet inefficient,

microscopic traffic simulators (Osorio and Chong, 2012b, Osorio and Nanduri, 2012,

Chen et al., 2012). This formulation is based on the metamodel (or surrogate model)

framework presented in Osorio and Bierlaire (2010b).

Each iteration of the SO algorithm uses a microscopic traffic simulator to deter-

mine equilibrium traffic flows for a given value of the behavioral parameter. For the

calibration problem, estimates for the equilibrium flows are extracted from the sim-

ulator and compared with the given flows. These observations are then used to fit

an analytical approximation of predicted flows. This approximation is referred to as

a metamodel, and is used to derive a new trial point (i.e. value of the behavioral

parameter) that minimizes the difference between the given flows and the predicted

flows. The trial point is then evaluated by the simulator, and the process continues

for a fixed computational budget.

Polynomials are often chosen for metamodels due to their analytic properties, yet

may not provide a satisfactory global fit for the relationship between the behavioral
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parameter and the predicted flows. By combining simulated information with the

approximations derived from the analytical queueing model, physical characteristics

of the network are captured and provide structure for the relationship between ex-

pected travel time and route choice. The incorporation of the analytical model to the

metamodel is expected to improve the accuracy of the metamodel, leading to better

trial points and faster convergence.

3.2.3 Metamodel formulation

For the calibration problem, the metamodelmi fits the flow predicted by the analytical

queueing model described in Section 3.2.4 on link segment i to the equilibrium flows

determined by the microscopic simulator. The flows predicted on link segment i by

the analytical queueing model for the behavioral parameter θ are given by the total

arrival rate to the link segment, λi(θ) (Equation (C.1)). The equilibrium flows for a

link segment i are evaluated by the simulator for a value of the behavioral parameter

and are denoted by f̂i(θ). The metamodel used for each link segment i combines the

flows predicted by the analytical queueing model with a linear term:

mi(θ;αi, βi) = αiλi(θ) + βi,0 + βi,1θ. (3.3)

At each iteration c, the parameters of the metamodel, αc and βc, are fit by per-

forming a least squares regression to the flow observations for each trial point, f̂(θa),

a ∈ [1, c]. The least squares problem is formulated for link segments i ∈ L̄ as follows:

min
αc
i ,β

c
i

k∑
a=1

wa

(
f̂i(θa)−mc

i(θa;α
c
i , β

c
i )
)2

+ w0

(
(αci − 1)2 + (βci,0)2 + (βci,1)2

)
(3.4)

The first term in Equation (3.4) represents the weighted distance between the

flows predicted by the metamodel and estimated by the simulator. As in Osorio and

Bierlaire (2010a), the weights for each observation are proportional to the inverse of

the distance from the current iterate. The weight parameters for each observation
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a ∈ [1, c], wa, are given for current iterate θc by:

wa =
1

1 + ||θc − θa||2
. (3.5)

The second term in Equation (3.4) ensures that the least square matrix is of full

rank. The initial values that result from these terms, α = 1 and β = 0, lead to an

initial metamodel that is based solely on the queueing model.

3.2.4 Analytical model formulation

Urban traffic can be modeled as a finite capacity queueing network (FCQN). Each

link in the urban network is modeled as one or more finite capacity queues. A link

is therefore divided into a set of link segments, such that each segment is modeled

by a single finite capacity queue with inter-arrival times and service times that fol-

low negative exponential distributions (i.e. the M/M/1/k queues). This differs from

traditional queueing models, as such models assume that there is no bound on the

number of vehicles that can fit within a queue. The analytical queueing model for-

mulated by Osorio and Bierlaire (2009b) and described by Equations (C.1) through

(C.6) captures between-queue interactions through structural parameters, and as-

sumes that turning probabilities are fixed. The variables used in the model for a

given link segment (i.e. queue) i are listed in Table C.1.

The model proposed by Osorio and Bierlaire (2009b) and described in Section 3.2.4

does not use a behavioral parameter to relate route choice with expected route travel

time. In order to calibrate this behavioral parameter, route choice must be endoge-

nous.

Route choice

Denote, for a set of routes ROD between an origin, O, and destination, D, the travel

time of a route r ∈ ROD by tr. For simplicity, it is assumed that route choice selection

follows a multinomial logit model that varies across alternatives, yet is uniform for

all users (see Ben-Akiva and Lerman (1985)); more general specifications such as
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path-size logit or C-logit could be inserted into the framework as well (Ben-Akiva

and Bierlaire, 1999, Cascetta et al., 1996). Thus, the probability of taking a route r

is given by:

P (r; θ) =
eθtr∑

s∈ROD
eθts

, (3.6)

for a negative scale parameter, θ, representing the sensitivity that users have to

differences in route travel times. We assume that users select from a fixed set of routes

between any pair of origin and destinations and that the demand for a given OD pair

is exogenous and fixed, independent of congestion levels. This route choice model will

in the following be inserted into the queueing model of Osorio and Bierlaire (2009b),

resulting in an endogenous representation of turning probabilities as a function of

congestion-sensitive route choice probabilities.

Link segment travel times

Denoting the set of link segments that comprise route r as Ωr and the expected travel

time on a link segment i as t̃i, the expected travel time of a route is described by the

sum of the expected travel time on each link segment within the route:

tr =
∑
i∈Ωr

t̃i. (3.7)

Expected link segment travel times are approximated by summing the free flow travel

time with the expected delay. The free flow travel time is exogenous, given by length

of the link segment, `i, divided by its speed limit, si. The expected delay in link

segment i is denoted by E[Wi], and thus the travel time along a link segment, t̃i, is

given by:

t̃i = E[Wi] + `i/si. (3.8)

The expected delay is estimated by using the relationship between expected delay

and queue-length described by Little’s Law (Little, 1961) applied to each link segment
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independently. The delay is a function of the total arrival rate to the queue λi and

the expected queue-length, denoted by E[Ni]:

E[Wi] =
E[Ni]

λi
. (3.9)

In order to calculate the delay, the expected number of vehicles in the queue must

be determined. Using N as a random variable representing the number of vehicles in

a single M/M/1/k queue, there is a closed-form expression for the stationary queue-

length distribution (see Equation 4.54 in Chapter 4.6.3 of Larson and Odoni (1981)):

P (N = n) =
(1− ρ)ρn

1− ρk+1
∀n ∈ {0, . . . , k}. (3.10)

For ρi = λi/µ̂i, the expected number of vehicles in queue i is given by:

E[Ni] =

ki∑
n=0

n
(1− ρi)ρni
1− ρki+1

i

=
(1− ρi)ρi
1− ρki+1

i

ki∑
n=0

nρn−1
i

=
(1− ρi)ρi
1− ρki+1

i

ki∑
n=0

d

dρi
ρni =

(1− ρi)ρi
1− ρki+1

i

d

dρi

(
ki∑
n=0

ρni

)

=
(1− ρi)ρi
1− ρki+1

i

d

dρi

(
1− ρki+1

i

1− ρi

)

=
(1− ρi)ρi
1− ρki+1

i

(
1− ρki+1

i

(1− ρi)2
− (ki + 1)ρkii

1− ρi

)

=
ρi

1− ρi
− (ki + 1)ρki+1

i

1− ρki+1
i

. (3.11)

Thus, the link segment travel time is given by:

t̃i =
1

λi

(
ρi

1− ρi
− (ki + 1)ρki+1

i

1− ρki+1
i

)
+ `i/si. (3.12)

The link segment travel time is added as a variable to the queueing model designed

by Osorio and Bierlaire (2009b), described in Section 3.2.4, increasing the number of

variables per link segment from five (Equations (C.1) to (C.5)) to six.
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External arrival rate

Routes for the same origin-destination pair may begin at multiple different links, as

an origin may connect to many road segments. The set of routes beginning with

queue i is denoted by {R(0) = i}. Denoting the demand for the OD pair connected

by a route r as dOD(r), the external arrival rate to queue i is given by:

γi =
∑

r∈{R(0)=i}

P (r; θ)dOD(r). (3.13)

Vehicles arriving to a full link are lost and do not enter the system. This external

arrival rate includes vehicles that are lost.

Turning probabilities

In the queueing model presented in Appendix C, the turning probabilities from queue

to queue are exogenous. As route choice becomes endogenous, so do the turning

probabilities. By denoting the set of routes containing upstream link segment i and

downstream link segment j as Rij, and the routes containing link segment i as Ri,

the turning probabilities are given by:

pij =

∑
r∈Rij P (r; θ)dOD(r)∑
s∈Ri P (s; θ)dOD(s)

. (3.14)

The denominator is the total demand for routes that contain the link segment i,

whereas the numerator is the portion of the total demand for routes that contain a

turn from link segment i to j. This ratio gives the turning probabilities, assuming

that all vehicles enter the system. This expression is used by the analytical queueing

model as the probability that a vehicle in link segment i turns into link segment j.

3.3 Simulation-based optimization algorithm

The algorithm used to solve the calibration optimization problem is a trust region

method adapted from Osorio and Bierlaire (2010a). For iteration c of the algorithm,
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define:

• θc as the current iterate, the value of the behavioral parameter

• mc
i as the metamodel for link i

• ∆c as the current trust region radius

• αci , βci,0, and βci,1 as the metamodel parameters for link segment i

• νc as a vector containing the metamodel parameters for each link segment i, αci ,

βci,0, and βci,1 for i ∈ L

• nc as the number of simulated points

0. Initialization

The algorithm is initialized with a given value of the behavioral parameter, θ0. The

analytical model is solved for the initial point and the simulated flows, f̂(θ0), are

evaluated, such that the initial metamodel parameters, α and β, can be fit.

The initial value for the trust region radius, ∆0 is selected in the range (0,∆max].

The trust region radius limits the step size to the local region around the current

value of the iterate.

The parameters that remain fixed for the entirety of the algorithm include:

• ∆max, the upper bound on the trust region radius

• ∆min, the lower bound on the trust region radius

• θmax, the upper bound on the value of the behavioral parameter

• θmin, the lower bound on the value of the behavioral parameter

• η ∈ (0, 1), the threshold for accepting new trial points

• τ̄ ∈ (0, 1), the threshold for sampling new points

• γinc and γdec, the factors for increasing or decreasing the trust region radius

• ū, the threshold on the number of consecutive rejected trial points required to

reduce the trust region radius

• nmax, the maximum number of simulation runs, i.e. computational budget
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1. Step calculation

At each iteration c, a new trial point is determined by minimizing the sum of the

squared distance between the flows predicted by the metamodel and the observed

flows:

min
θ

∑
i∈L̄

(mc
i(θ)− yi)2 (3.15)

subject to:

h(θ) = 0 (3.16)

||θ − θc||2 ≤ ∆c (3.17)

θmin ≤ θ ≤ θmax. (3.18)

Equation (3.16) represents the modified queueing model, consisting of the system of

nonlinear equations described by Equations (C.1) to (C.5) and (3.12). Constraint

(3.17) is the trust region constraint, which bounds the step size that behavioral pa-

rameter θ can take from the current value of the behavioral parameter θc. Constraint

(3.18) places an upper and lower bound on the value of the behavioral parameter.

The solution to this constrained nonlinear optimization problem is the new trial point,

denoted by θ∗.

2. Trial point test

The simulated flows for the trial point, f̂(θ∗), are evaluated. Compute:

σc =

∑
i∈L̄(f̂i(θc)− yi)2 −

∑
i∈L̄(f̂i(θ

∗)− yi)2∑
i∈L̄(mc

i(θc)− yi)2 −
∑

i∈L̄(mc
i(θ
∗)− yi)2

. (3.19)

– If σc ≥ η, then accept the trial point, θc+1 = θ∗, and set uc = 0

– Otherwise, reject the trial point, θc+1 = θc, and and set uc+1 = uc + 1
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Regardless of whether the trial point is accepted or rejected, the simulated flow ob-

servations for the trial point are included in the set of simulation flow observations

used to fit the parameters of the metamodel for all subsequent iterations, nc = nc + 1

3. Model improvement

The metamodel parameters are determined by solving the least squares problem de-

fined by Equation (3.3)-(3.5). This yields a new set of metamodel parameters, denoted

νc+1.

If the relative change in the model parameters as given by the Euclidean norm is

less than the threshold:

||νc+1 − νc||2
||νc||2

< τ̄, (3.20)

a new point, θ+, is sampled uniformly from the feasible region of the behavioral

parameter, given by [θmin, θmax]. The simulated and predicted flows, f̂(θ+) and λ(θ+),

are derived for the sampled point, and the point is included in the set of simulated

flow observations used to fit the parameters of the metamodel, nc = nc + 1. The

parameters for the metamodel are then updated to reflect the new set of observations

by solving the least squares problem defined by Equation (3.3)-(3.5).

4. Updating the trust region radius

If σc > η, then the trust region radius is increased, such that:

∆c+1 = min{γinc∆c,∆max}. (3.21)

If ρc ≤ η and the number of consecutive rejected points exceeds the threshold, i.e.

uc > ū, then the trust region radius is decreased, such that:

∆c+1 = max{γdec∆c,∆min}. (3.22)
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In this case, uc is reset to 0, such that the trust region radius can only be decreased

every (ū+ 1) iterations.

After the trust region radius is updated, the algorithm increases by a step, from

c to c + 1, and returns to the step calculation. It terminates when the number of

simulation runs reaches the exceeds the maximum budgeted, nc > nmax.

3.4 Implementation

3.4.1 Test network description

Consider the network in Figure 3-1. Each link in the network consists of a single lane

and is modeled by a single queue. Table 3.1 details the properties of the links within

the network.

The network has one origin-destination pair, nodes 1 and 5 respectively, with a

demand of 1400 vehicles per hour. There are two routes that connect the pair, a route

to the north (through nodes 1, 2, 3, 5) and a route to the south (through nodes 1,

2, 4, 5). The northern route has a shorter free flow travel time, yet faces delay at a

signalized intersection at node 3, whereas the southern route is entirely unsignalized

and free of bottlenecks. The signal at node 3 is green for 30 seconds out of the 90

second cycle time. The free flow travel time on the northern route is 18 minutes, as

compared to the free flow travel time on the southern route, which is 20.14 minutes.

The queueing model parameters that represent rates (γ, λ, and µ) are given in

terms of vehicles per lane per hour. Thus, for an unsignalized link i, the service rate,

µi, is given by the saturation rate of 1800 vehicles per hour. The service rate of a

signalized link is given by the green split multiplied by the saturation rate. This leads

to a service rate of 30
90

1800 = 600 vehicles per hour for link 2. Lastly, the external

arrival rate to link 1, described by Equation (3.13), is 1400 vehicles per hour, as both

routes in the network begin on link 11.

The northern route is faster and hence preferred in the absence of congestion.

1For numerical reasons, the rates to the queueing model are scaled by the saturation flow, such
that the service rate for an unsignalized link is 1.
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1 2 3 5

4

Figure 3-1: Test network diagram.

As more vehicles take this route, it becomes congested, its delay increases, and the

southern route becomes increasingly attractive. The stochastic user equilibrium in

the simulator produces mutually consistent route flows and travel times for a given

route choice model.

Link Nodes connected Length [m] Speed limit [km/hr] Signalized
1 1 → 2 5000 50 unsignalized
2 2 → 3 7500 50 signalized
3 2 → 4 7071 60 unsignalized
4 3 → 5 7071 60 unsignalized
5 4 → 5 2500 50 unsignalized

Table 3.1: Link properties of the test network.

3.4.2 Traffic simulation model

The network is implemented in AIMSUN, version 6.1 (TSS, 2011). Of interest is

determining the stochastic user equilibrium that corresponds to the aforementioned

consistency between route flows and route travel times for a given route choice model.

We assume a multinomial logit model and evaluate the equilibrium based on a given

value of the behavioral parameter. The computation of this equilibrium is detailed

in the following paragraphs.
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Initial route choice

For a given value of θ, the initial values for the route travel times, t0r are based on the

relationship between expected link segment travel time t̃i(θ), and route travel time,

described by Equations (3.7) and (3.12):

t0r =
∑
i∈Ωr

t̃i(θ) (3.23)

Route choice probabilities are given by the multinomial logit model for a given

θ (Equation (3.6)). These probabilities are determined before the traffic simulation

is run and fixed for the entirety of a given simulation. A given run of the simulator

contains a 90 minute warm-up period before collecting the route travel times and

simulated traffic counts for 3 hours. The simulator is run with the initial route

choice, with t̂0r representing the average travel time on route r and f̂ 0
i (θ) representing

the average flow per hour on link segment i for the 3 hour simulation.

Stochasticity in the simulator lead to significant fluctuations in simulated flows

and travel times for the same route choice. Filtering can reduce the oscillations in the

system in order to better estimate the stochastic user equilibrium. The filtered travel

times serve as estimators of the expected travel times, leading to less variable route

choice. The initial use of a fixed filtering weight results in relatively fast convergence

to a near-equilibrium state, which then is refined by the method of successive averages.

The description of the filtering used is described in the following paragraphs.

Filtering travel times

Multiple simulation runs are used to filter the values for the route travel times and

flows. The value of the travel time on a route r at simulation run v is denoted by

tvr . The average travel time on a route r for the simulation at simulation run v is

given by t̂vr , and the average flow per hour on a link segment i for the simulation at

simulation run v is given by f̂ vi (θ). The initial values for the travel time at v = 0 are
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given in Equation (3.23). For 0 < v < 20 and w = 1/10:

tv+1
r = wt̂vr + (1− w)tvr . (3.24)

The route travel time estimates switch from averaging simulated travel times, t̂vr ,

with a fixed weight w to averaging the travel times with a weight w(v) that decreases

as v increases. This relationship is traditionally given by:

w(v) =
1

v + 1
. (3.25)

However, when switching to a method of successive averages, the initial weight

after the switch is set to equal the fixed weight. Switching at c = 20 implies that:

w(20) =
1

20 +m+ 1
(3.26)

for some value of m. For w = 1/10, m = −11. Thus for v > 19:

tv+1
r =

1

v − 10
t̂vr +

v − 11

v − 10
tvr . (3.27)

The algorithm terminates at v = 60, once 60 simulations have been run. The

stochastic user equilibrium route flows for a given value of θ are taken to be the

average of the last 20 route flows output by the simulator:

f̂i(θ) =
60∑
v=41

1

20
f̂ vi (θ). (3.28)

3.4.3 Algorithm details

The parameters that remain fixed for the entirety of the algorithm include:

• ∆max = 1010

• ∆min = 10−2

• ∆0 = 10−1

• η = 10−3
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• τ̄ = 0.1

• γinc = 1.2

• γdec = 0.9

• ū = 10

• nmax = 50

• w0 = 10−3

Fitting the metamodel

The lsqlin routine in Matlab (MATLAB, 2012) was used to solve the least squares

problem for fitting the parameters of the metamodel.

Step calculation: trust region subproblem

New trial points are determined by minimizing the sum of the squared difference

between the flows predicted by the metamodel and the observed flows. This objective

function for this problem is described by Equations (3.15), and the constraints for this

problem are the equations used by the modified queueing model (Equations (C.1) to

(C.5) and (3.12)), as well as the trust region inequalities (Equation (3.17)), and the

bounds on the behavioral parameter (Equation (3.18)). This nonlinear optimization

problem is solved in Matlab using the “active-set” algorithm within the fmincon

routine (Mathworks, Inc., 2012), with function and constraint tolerances set at the

default of 10−6.

3.4.4 Test network results

Given flows for the a value of the behavioral parameter, −0.2, were calculated by

averaging 10 simulated equilibrium flows evaluated using the methodology in Section

3.4.2. The simulation-based optimization algorithm detailed in Section 3.3 was then

used to calibrate the behavioral parameter, given an initial value of −0.4.

The results given by this full metamodel formulation were compared with results

given by a metamodel implemented with the polynomial term only, i.e. αi = 0, ∀i ∈ L̄
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Figure 3-2: The figure plots the value of the trial points for each iteration of the SO
algorithm for each metamodel with the initial point of −0.4.

in Equation (3.3). Each metamodel variation was run through the SO algorithm five

times. The trial points for each iteration of the algorithm are shown in Figure 3-2.

The mean values of the trial points at each iteration are displayed in Figure 3-3. For

the simple topology of the network, the metamodel that incorporates the analytical

queueing model converges faster than the linear metamodel.

3.5 Conclusion

This chapter proposes an analytical finite capacity queueing model that accounts for

the relationship between route choice and traffic flow. The model is adapted from

Osorio and Bierlaire (2009b) and used in the metamodel within a simulation-based

optimization framework to calibrate behavioral parameters from measured flows. A

sample network is considered and calibrated based on simulated flows. The added

value of using the analytical model in the metamodel is determined by comparing

the convergence of the SO algorithm with a polynomial metamodel. Ongoing work
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Figure 3-3: The figure plots the mean values of the trial points for each iteration of
the SO algorithm for each metamodel with the initial point of −0.4.

focuses on increasing the tractability of the analytical queueing model for large-scale

networks.
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Chapter 4

Conclusion

Chapter 2 describes the formulation of an analytical queueing model that approxi-

mates the stationary joint aggregate distribution of a tandem network. The model

was validated with a discrete event simulator and used to solve a signal optimization

problem. The model, accounting for joint information, produced a signal plan that

reduced average travel time, as compared to the model presented by Osorio and Bier-

laire (2009b). Further research is required to apply the model to more realistic road

networks, incorporating the additional complexity that results from dedicated turn-

ing lanes and various types of intersections. The joint model can also be embedded

in a simulation-based optimization framework, as in Osorio and Bierlaire (2010b), to

produce signal plans that outperform the analytical solution. Improving the com-

putational efficiency of the joint approach may be required in order to make these

problems tractable for large-scale systems.

Chapter 3 formulates an analytical queueing model that accounts for route choice

(Section 3.2.4) and presents a methodology to calibrate route choice parameters of a

microscopic traffic simulator using simulation-based optimization techniques (Section

3.3). Future work can add flexibility to the route choice model, considering additional

variables that affect route choice. Extending the model to large-scale systems may

require a more tractable formulation of the analytical queueing model in order to

address more complex calibration problems.
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Appendix A

Transition rate matrix derivation

Table A.1 details the full transition rate matrix of a three queue system with queues

indexed by (i, i + 1, i + 2), within a general I-queue network. The parameters µ,

γ and k are exogenous. The variables λi and µ̂i+2 are endogenous. Recall that λi

approximates the arrivals to queue i, which consist of either external arrivals, γi, or

arrivals from queues upstream of i which are not in the (i, i+1, i+2) 3-queue system.

Similarly, the service rate of queue i+2 (the most downstream of the 3-queue system),

µ̂i+2, is also endogenous, since it is determined by the traffic at further downstream

queues.

External arrivals are allowed to all queues. The first three sets of rates define the

transitions that may occur when an external arrival occurs at queue i, i+ 1 and i+ 2,

respectively. An external arrival to a given queue can cause the queue to transition

from aggregate state 0 (resp. 1) to aggregate state 1 (resp. 2). Upon an external

arrival to, for instance, queue i, the transition from aggregate state 0 to 1 occurs with

probability 1, and the transition from aggregate state 1 to 2 occurs if queue i is in the

disaggregate state ki − 1, occurring with probability αf
i,s (defined in Section 2.2.3).

The fourth set of rates considers a service completion at queue i. Such an event

can cause queue i to transition from aggregate state 1 (resp. 2) to 0 (resp. 1). Upon

service completion, the transition from state 2 to 1 occurs with probability 1, and

the transition from 1 to 0 occurs if queue i is in the disaggregate state 1, occurring

with probability αe
i,s (defined in Section 2.2.3). Additionally, a service completion at
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queue i can cause queue i+1 to transition from aggregate state 0 (resp. 1) to 1 (resp.

2), which occurs with probability 1 (resp. αf
i+1,s).

The fifth set of rates considers a service completion at queue i+ 1. The rates are

obtained through similar reasoning as for service completion at queue i. Additionally,

if a job at queue i is being blocked by queue i+ 1, then a service completion at queue

i+ 1 may trigger a change in the state of queue i. This is described via the blocking

probability βi,1 (defined in Section 2.2.3). More specifically, if queue i is blocked by

queue i+ 1, then a service completion at queue i+ 1 will:

1. send the job that has completed service at queue i + 1 to queue i + 2, which

may lead queue i + 2 to transition from aggregate state 0 (resp. 1) to 1 (resp.

2);

2. unblock a job at queue i, which may lead queue i to transition from aggregate

state 1 (resp. 2) to 0 (resp. 1);

3. have no impact on the state of queue i + 1 (since an arrival and a departure

occur simultaneously).

The final set of rates considers a service completion at queue i+ 2. The rates are

obtained through similar reasoning as for service completion at queue i + 1. Since

queue i+2 may block both queue i+1 and queue i, then a service completion at queue

i + 2 may trigger changes in the states of both queues i and i + 1. This unblocking

is described via the blocking probabilities βi,2, βi,3 and βi,4 (defined in Section 2.2.3).
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Table A.1: Transition rate matrix for a 3-queue system
with the 3 queues indexed by (i, i+1, i+2). Enumeration
of all possible transitions assuming an initial state s =
(ji, ji+1, ji+2) and a new state t.

External arrival to queue i
New state t Initial conditions Rate
(ji + 1, ji+1, ji+2) ji = 0 λi
(ji + 1, ji+1, ji+2) ji = 1, ji+1 = {0, 1} λiα

f
i,s

(ji + 1, ji+1, ji+2) ji = 1, ji+1 = 2, ji+2 = {0, 1} λiα
f
i,s

(ji + 1, ji+1, ji+2) ji = 1, ji+1 = 2, ji+2 = 2 λiα
f
i,s

External arrival to queue i+ 1
New state t Initial conditions Rate
(ji, ji+1 + 1, ji+2) ji+1 = 0 γi+1

(ji, ji+1 + 1, ji+2) ji+1 = 1, ji+2 = {0, 1} γi+1α
f
i+1,s

(ji, ji+1 + 1, ji+2) ji+1 = 1, ji+2 = 2 γi+1α
f
i+1,s

External arrival to queue i+ 2
New state t Initial conditions Rate
(ji, ji+1, ji+2 + 1) ji+2 = 0 γi+2

(ji, ji+1, ji+2 + 1) ji+2 = 1 γi+2α
f
i+2,s

Service completion at queue i
New state t Initial conditions Rate
(ji, ji+1 + 1, ji+2) ji = 1, ji+1 = 0 µi(1− αe

i,s)
(ji − 1, ji+1 + 1, ji+2) ji = 1, ji+1 = 0 µiα

e
i,s

(ji, ji+1 + 1, ji+2) ji = 1, ji+1 = 1, ji+2 = {0, 1} µi(1− αe
i,s)α

f
i+1,s

(ji − 1, ji+1, ji+2) ji = 1, ji+1 = 1, ji+2 = {0, 1} µiα
e
i,s(1− αf

i+1,s)
(ji − 1, ji+1 + 1, ji+2) ji = 1, ji+1 = 1, ji+2 = {0, 1} µiα

e
i,sα

f
i+1,s

(ji, ji+1 + 1, ji+2) ji = 1, ji+1 = 1, ji+2 = 2 µi(1− αe
i,s)α

f
i+1,s

(ji − 1, ji+1, ji+2) ji = 1, ji+1 = 1, ji+2 = 2 µiα
e
i,s(1− αf

i+1,s)
(ji − 1, ji+1 + 1, ji+2) ji = 1, ji+1 = 1, ji+2 = 2 µiα

e
i,sα

f
i+1,s

(ji − 1, ji+1 + 1, ji+2) ji = 2, ji+1 = 0 µi
(ji − 1, ji+1 + 1, ji+2) ji = 2, ji+1 = 1, ji+2 = {0, 1} µiα

f
i+1,s

(ji − 1, ji+1, ji+2) ji = 2, ji+1 = 1, ji+2 = {0, 1} µi(1− αf
i+1,s)

(ji − 1, ji+1 + 1, ji+2) ji = 2, ji+1 = 1, ji+2 = 2 µiα
f
i+1,s

(ji − 1, ji+1, ji+2) ji = 2, ji+1 = 1, ji+2 = 2 µi(1− αf
i+1,s)

Service completion at queue i+ 1
New state t Initial conditions Rate
(ji, ji+1, ji+2 + 1) ji+1 = 1, ji+2 = 0 µi+1(1− αe

i+1,s)
(ji, ji+1 − 1, ji+2 + 1) ji+1 = 1, ji+2 = 0 µi+1α

e
i+1,s
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(ji, ji+1, ji+2 + 1) ji+1 = 1, ji+2 = 1 µi+1(1− αe
i+1,s)α

f
i+2,s

(ji, ji+1 − 1, ji+2) ji+1 = 1, ji+2 = 1 µi+1α
e
i+1,s(1− αf

i+2,s)
(ji, ji+1 − 1, ji+2 + 1) ji+1 = 1, ji+2 = 1 µi+1α

e
i+1,sα

f
i+2,s

(ji, ji+1 − 1, ji+2 + 1) ji = 0, ji+1 = 2, ji+2 = 0 µi+1

(ji, ji+1 − 1, ji+2) ji = 0, ji+1 = 2, ji+2 = 1 µi+1(1− αf
i+2,s)

(ji, ji+1 − 1, ji+2 + 1) ji = 0, ji+1 = 2, ji+2 = 1 µi+1α
f
i+2,s

(ji, ji+1 − 1, ji+2 + 1) ji = {1, 2}, ji+1 = 2, ji+2 = 0 µi+1(1− βi,1)
(ji, ji+1 − 1, ji+2) ji = {1, 2}, ji+1 = 2, ji+2 = 1 µi+1(1− αf

i+2,s)(1− βi,1)
(ji, ji+1 − 1, ji+2 + 1) ji = {1, 2}, ji+1 = 2, ji+2 = 1 µi+1α

f
i+2,s(1− βi,1)

(ji, ji+1, ji+2 + 1) ji = 1, ji+1 = 2, ji+2 = 0 µi+1(1− αe
i,s)βi,1

(ji − 1, ji+1, ji+2 + 1) ji = 1, ji+1 = 2, ji+2 = 0 µi+1α
e
i,sβi,1

(ji, ji+1, ji+2 + 1) ji = 1, ji+1 = 2, ji+2 = 1 µi+1(1− αe
i,s)α

f
i+2,sβi,1

(ji − 1, ji+1, ji+2) ji = 1, ji+1 = 2, ji+2 = 1 µi+1(1− αf
i+2,s)α

e
i,sβi,1

(ji − 1, ji+1, ji+2 + 1) ji = 1, ji+1 = 2, ji+2 = 1 µi+1α
f
i+2,sα

e
i,sβi,1

(ji − 1, ji+1, ji+2 + 1) ji = 2, ji+1 = 2, ji+2 = 0 µi+1βi,1
(ji − 1, ji+1, ji+2 + 1) ji = 2, ji+1 = 2, ji+2 = 1 µi+1α

f
i+2,sβi,1

(ji − 1, ji+1, ji+2) ji = 2, ji+1 = 2, ji+2 = 1 µi+1(1− αf
i+2,s)βi,1

Service completion at queue i+ 2
New state t Initial conditions Rate
(ji, ji+1, ji+2 − 1) ji+2 = 1 µ̂i+2α

e
i+2,s

(ji, ji+1, ji+2 − 1) ji+1 = 0, ji+2 = 2 µ̂i+2

(ji, ji+1, ji+2 − 1) ji+1 = {1, 2}, ji+2 = 2 µ̂i+2(1− βi,3)
(ji, ji+1 − 1, ji+2) ji+1 = 1, ji+2 = 2 µ̂i+2α

e
i+1,sβi,3

(ji, ji+1 − 1, ji+2) ji = 0, ji+1 = 2, ji+2 = 2 µ̂i+2βi,3
(ji, ji+1 − 1, ji+2) ji = {1, 2}, ji+1 = 2, ji+2 = 2 µ̂i+2βi,4
(ji − 1, ji+1, ji+2) ji = 1, ji+1 = 2, ji+2 = 2 µ̂i+2α

e
i,sβi,2

(ji − 1, ji+1, ji+2) ji = 2, ji+1 = 2, ji+2 = 2 µ̂i+2βi,2
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Appendix B

Expected number of vehicles

This section derives the analytical expression for the expected number of vehicles in

queue i, E[Ni]. We have:

E[Ni] = E[E[Ni | NA,i]]

= 0P (NA,i = 0) + E[Ni | NA,i = 1]P (NA,i = 1) + kiP (NA,i = 2) (B.1)

We derive an analytical approximation for E[Ni | NA,i = 1]. By definition:

E[Ni | NA,i = 1] =

ki−1∑
n=1

nP (Ni = n | NA,i = 1) (B.2)

We approximate P (Ni | NA,i = 1) by using the functional form for the stationary

distribution of a single M/M/1/k queue (Equation (2.13)), and following a similar

derivation to that of (2.14), for a given value of the traffic intensity, ρ, we obtain:

P (Ni = n | NA,i = 1) =
(1− ρ)ρn−1

1− ρk−1
. (B.3)

Inserting (B.3) into (B.2):
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E[Ni | NA,i = 1] =

ki−1∑
n=1

n
(1− ρ)ρn−1

1− ρki−1
=

1− ρ
1− ρki−1

ki−1∑
n=1

nρn−1

=
1− ρ

1− ρki−1

ki−1∑
n=1

d

dρ
ρn =

1− ρ
1− ρki−1

d

dρ

(
ki−1∑
n=1

ρn

)

=
1− ρ

1− ρki−1

d

dρ

(
ρ

ki−2∑
n=0

ρn

)

=
1− ρ

1− ρki−1

d

dρ

(
ρ

1− ρki−1

1− ρ

)
=

1− ρ
1− ρki−1

(
1− ρki−1

1− ρ
+ ρ

[
1− ρki−1

(1− ρ)2
− (ki − 1)ρki−2

1− ρ

])
= 1 +

ρ

1− ρ
− (ki − 1)ρki−1

1− ρki−1
(B.4)

The above expression depends on the traffic intensity ρ. We proceed as in Sec-

tion 2.2.3 and provide the following state-dependent approximation of ρ, for a state

s = (1, ji+1, ji+2):

ρi,s =


λi/µi if ji+1 < 2

λi/µi+1 if ji+1 = 2 and ji+2 < 2

λi/µ̂i+2 if ji+1 = 2 and ji+2 = 2

(B.5)

where λi is obtained through (2.17), µ is exogenous and µ̂ is obtained through (2.26).

To summarize, for a given queue i, we consider the 3-queue system where i is the

most upstream of the 3 queues. This allows us to derive the value of the disaggregate

state Ni by conditioning on the states of the 2-downstream queues. In this way, we

account for blocking that arises from either of these 2 downstream queues. Letting

Pi denote the joint aggregate distribution of the system (NA,i, NA,i+1, NA,i+2):
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E[Ni | NA,i = 1] = E[E[Ni | NA,i = 1, NA = s]]

= E[Ni | NA,i = 1, NA,i+1 < 2]Pi(NA,i = 1, NA,i+1 < 2)

+ E[Ni | NA,i = 1, NA,i+1 = 2, NA,i+2 < 2]Pi(NA,i = 1, NA,i+1 = 2, NA,i+2 < 2)

+ E[Ni | NA,i = 1, NA,i+1 = 2, NA,i+2 = 2]Pi(NA,i = 1, NA,i+1 = 2, NA,i+2 = 2),

(B.6)

where the three expectations on the right-hand side of the above equation are given

by inserting the expression in (B.4) and their corresponding ρ values defined by (B.5).
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Appendix C

Marginal finite capacity queueing

model

The finite capacity queuing model from (Osorio and Bierlaire, 2009b) assumes inde-

pendence between queues and captures interactions through structural parameters.

The variables used in this model for a given queue i are listed in Table C.1.

γi external arrival rate;
λi total arrival rate;
µi service rate of a server;
µ̃i unblocking rate;
µ̂i effective service rate;

P f
i probability of being blocked at queue i;
pij transition probability from queue i to queue j;
ki upper bound on queue length;
Ni number of vehicles in queue i;
P (Ni = ki) probability that queue i is full;
I+ set of downstream queues to queue i.

Table C.1: List of variables used in independent finite capacity queuing model.

The equation for blocking probability is based on the closed-form expression avail-

able for single finite capacity queues, the same as in Equation (2.13). The system of

equations is given by:
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λi = γi +

∑
j pijλj(1− P (Nj = kj))

(1− P (Ni = ki))
, (C.1)

1

µ̃i
=
∑
j∈I+

λj(1− P (Nj = kj))

λi(1− P (Ni = ki))µ̂j
(C.2)

1

µ̂i
=

1

µi
+ P f

i

1

µ̃i
, (C.3)

P f
i =

∑
j

pijP (Nj = kj), (C.4)

P (Ni = ki) =
1− ρi

1− ρki+1
i

ρki , (C.5)

ρi =
λi
µ̂i
. (C.6)

The exogenous parameters used in the system of equations are γi, pij, ki, and

µi. All other variables are endogenous. Between queue interactions are captured by

determining the probability a queue is blocked by a downstream queue that is full,

P f
i , and the rate at which the queue becomes unblocked, µ̃i, related by Equations

(C.2), (C.3), and (C.4).
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